Course Description Form

1. Course Name:				
Numerical solutions of ODEs				
2. Course Code:				
MATH50)4			
3. Semester /	Year:			
Second / 2	2023-2024	-		
4. Description	n Prepara	tion Date:		
23-3-2024	4			
5. Available A	ttendanc	e Forms:		
Attendand	ce lectures	in the classroom		
6. Number of	Credit Ho	ours (Total) / Number of Units (Total)		
45 hours/	3 units			
7. Course adm	ninistrato	or's name (mention all, if more than one name)		
Name: As	st. Prof. D	r. Fadhel Subhi Fadhel		
Email: fa	dhel.subhi	i@nahrainuniv.edu.ig		
8. Course Obj	ectives			
Course Object	tives	• Study the numerical solutions of ordinary differential		
		equations using multi-step methods (including the		
		theoretical aspect as well)		
		• Using Range-Kutta methods to find the numerical formulae		
		to solve this type of equations		
		• Study the numerical stability convergence and consistency		
		of the methods that were derived previously (in the two		
		methods above)		
		• Apply these methods to find the numerical solutions of		
		systems of differential equations		
		• Study the numerical solutions of boundary value problems		
		• Studying approximation methods for solving ODEs		
9 Teaching a	nd Learni	ng Strategies		
Strategy	The	e teaching and learning strategy is considered a set of tools and		
Strategy	practices	carried out by both the teacher and the student in order to		
comprehe		end the academic material or course, which is the numerical		
	solutions	s to ordinary differential equations in the best possible way. This		
depends		on two basic factors: good transmission by the subject teacher.		
which is		supported by teaching strategies, and good reception by the		
student. w		which is supported by learning strategies. Teaching strategies		
include a set of organized plans and methods followed by the s				
teacher in		in order to guide students towards achieving learning goals.		
including of		g cognitive goals for numerical analysis, skill goals for finding		
numerical		al solutions, including programming using computers, and		
emotional and value goals through sensory perception of the nature of				
L	entouonai and faite goals in ough sensor) perception of the name of			

		the problem and	how to deal with	it. This is done.	Through specific				
		teaching and lear	rning methods in	order for the s	tudent to acquire				
	-	transferable general and qualifying skills.							
10.	Course S	Structure							
Week	Hours	Required	Unit or subject	Learning method	Evaluation				
		Learning	name		method				
		Outcomes							
		Distinguish		Attendance	Ask questi				
1	4	between different	Numerical	interactive	and s				
		numerical effects	operators	lectures	assignments				
		Learn to solve		Attendance	Ask questions and				
		finite difference	Finite difference	interactive	give assignments				
2	4	equations	equations	lectures					
		analytically and	1						
		Finding a solution	Solving	Attendance	Ask questions and				
_		to differential	Differential	interactive	give assignments				
3	4	equations	Equations Using	lectures	give assignments				
		numerically	Taylor Methods						
		Theoretical study		Attendance	Ask questions and				
4	4	and derive the	Euler's method	interactive	give assignments				
		method order		lectures					
		Theoretical study		Attendance	Ask questions, give				
5	4	and derive the	Euler's method	lectures	make a 1st attence				
		method order		lectures	mid exam				
		Study the methods	Linear multistep	Attendance	Ask questions and				
		of derivation to	methods	interactive	give assignments				
6	4	find the order of		lectures					
0		error and study the							
		stability of the							
		Study the methods	Linear multisten	Attendance	Ask questions and				
		of derivation to	methods	interactive	give assignments				
7		find the order of	memous	lectures	give assignments				
1	4	error and study the							
		stability of the							
		numerical method							
		Study the methods	Linear multistep	Attendance	Ask questions and				
		of derivation to	methods	interactive	give assignments				
8	4	error and study the		lectures					
		stability of the							
		numerical method							
9		Study the methods	Linear multistep	Attendance	Ask questions and				
	1	of derivation to	methods	interactive	give assignments				
	4	find the order of		lectures					
		error and study the							

		stability of the			
		numerical method			
		Study the methods		Attendance	Ask questions and
		of derivation to		interactive	give assignments
		find the order of	Runge-Kutta	lectures	
10	4	error and study the	methode		
		stability of the	memous		
		numerical method			
		Study the methods		Attendance	Ask questions and
		of derivation to		intornative	Ask questions and
		find the order of	Dungo Kutto		give assignments
11	4	arron and study the	Kulige-Kulla	lectures	
		error and study the	methous		
		stability of the			
		Study the methode		Attendence	A alt avaationa aive
		Study the methods		Attendance	Ask questions, give
		of derivation to	Dunga Vutta	Interactive	assignments, and
12	4	find the order of	Runge-Kutta	lectures	make a 2nd
		error and study the	methods		attendance mid
		stability of the			exam
		numerical method	Doundary value	Attendence	Ask questions and
12	4	Using the shooting	boundary value	Attendance	Ask questions and
15	4	method	problems	lactures	give assignments
		Using the finite	Doundary value	Attendence	Ask questions and
		difference method	boundary value	Attendance	Ask questions and
14	4	and the collocation	problems	Interactive	give assignments
		and the conocation		lectures	
		Studie a the	Variational	A then don as	A als associants and
15	4	Studying the	Variational	Attendance	Ask questions and
		approximation	neration Method	Interactive	give assignments
		methods		lectures	

Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports ... etc.

20% monthly written exams

10% daily and oral exams, homework's, and class activities

70% written final exam

12. Learning and Teaching Resources

Required textbooks (curricular	1. Lambert J. D., "Computational Methods in
books, if any)	Ordinary Differential Equations", John Wiley
	and Sons, Ltd., 1973.
	2. Burden R. L. and Faires J. D., "Numerical
	Analysis", 3rd Edition, PWS, 1985.
Main references (sources)	Butcher, J. C. (1987). The numerical analysis of
	ordinary differential equations: Runge-Kutta and
	general linear methods. Wiley-Interscience.
Recommended books and	Ph.D. and M.Sc. Theses of Al-Nahrain university
references (scientific journals,	
reports)	

Electronic References, Websites Online lectures recorded on YouTube by the lecturer.	3
]
4	